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REFACE 

In this Tenth Edition of Probability and Statistical Inference, Elliot Tanis and Dale 
Zimmerman would like to acknowledge the many contributions that Robert Hogg 
made to the first nine editions. Dr. Hogg died on December 23, 2014, but his insights 
continue on in this tenth edition. We are indebted to his influence on our lives and 
work. 

CONTENT AND COURSE PLANNING 

This text is designed for a two-semester course, but it can be adapted for a one
semester course. A good calculus background is needed, but no previous study of 
probability or statistics is required. 

This new edition has more than 25 new examples and more than 75 new exer
cises. However, its chapters are organized in much the same manner as in the 
ninth edition. The first five again focus on probability, including the following 
topics: conditional probability, independence, Bayes' theorem, discrete and contin
uous distributions, certain mathematical expectations including moment-generating 
functions, bivariate distributions along with marginal and conditional distributions, 
correlation, functions of random variables and their distributions, the central limit 
theorem, and Chebyshev's inequality. We added a section on the hypergeomet
ric distribution, adding to material that had previously been scattered throughout 
the first and second chapters. Also, to this portion of the book we added material 
on new topics, including the index of skewness and the laws of total probability 
for expectations and the variance. While the strong probability coverage of the 
first five chapters is important for all students, feedback we have received indi
cates that it has been particularly helpful to actuarial students who are studying for 
Exam P in the Society of Actuaries' series ( or Exam 1 of the Casualty Actuarial 
Society). 

The remaining four chapters of the book focus on statistical inference. Topics 
carried over from the previous edition include descriptive and order statistics, 
point estimation including maximum likelihood and method of moments estima
tion, sufficient statistics, Bayesian estimation, simple linear regression, interval 
estimation, and hypothesis testing. New material has been added on the top
ics of percentile matching and the invariance of maximum likelihood estima
tion, and we've added a new section on hypothesis testing for variances, which 
also includes confidence intervals for a variance and for the ratio of two vari
ances. We present confidence intervals for means, variances, proportions, and 
regression coefficients; distribution-free confidence intervals for percentiles; and 
resampling methods (in particular, bootstrapping). Our coverage of hypothesis 
testing includes standard tests on means (including distribution-free tests) , vari
ances, proportions, and regression coefficients, power and sample size, best critical 
regions (Neyman-Pearson), and likelihood ratio tests. On the more applied side, 
we describe chi-square tests for goodness of fit and for association in contingency 
tables, analysis of variance including general factorial designs, and statistical quality 
control. 

v 



vi Preface 

The first semester of the course should contain most of the topics in Chapters 1-5. 
The second semester includes some topics omitted there and many of those in 
Chapters 6-9. A more basic course might omit some of the starred sections, but 
we believe that the order of topics will give the instructor the flexibility needed in 
his or her course. The usual nonparametric and Bayesian techniques are placed at 
appropriate places in the text rather than in separate chapters. We find that many 
persons like the applications associated with statistical quality control in the last 
section. 

The Prologue suggests many fields in which statistical methods can be used. At 
the end of each chapter, we give some interesting historical comments, which have 
proven to be very worthwhile in the past editions. The answers given in this text 
for exercises that involve the standard distributions were often calculated using our 
probability tables which, of course, are rounded off for printing. If you use a statistical 
package, your answers may differ slightly from those given. 

ANCILLARIES 

Data sets for this text are available on Pearson's Student Resources website: 
https://www.pearson.com/math-stats-resources. 

An Instructor's Solutions Manual containing worked-out solutions to the even
numbered exercises in the text is available for download from Pearson Education 
Instructor's Resource website: https://www.pearson.com/us/sign-in.html. 

Some of the numerical exercises were solved with Maple. For additional 
exercises that involve simulations, a separate manual, Probability & Statistics: 
Explorations with MAP LE, second edition, by Zaven Karian and Elliot Tanis, is 
available for download from Pearson's Student Resources website. This is located 
at https://www.pearson.com/math-stats-resources. Several exercises in that manual 
also make use of the power of Maple as a computer algebra system. 

If you find errors in this text, please send them to dale-zimmerman@uiowa.edu 
so that they can be corrected in a future printing. These errata will also be posted on 
http://homepage.divms.uiowa.edu/'""'dzimmer/. 
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RO LOGUE 

The discipline of statistics deals with the collection and analysis of data. Advances 
in computing technology, particularly in relation to changes in science and business, 
have increased the need for more statistical scientists to examine the huge amount 
of data being collected. We know that data are not equivalent to information. Once 
data (hopefully of high quality) are collected, there is a strong need for statisticians to 
make sense of them. That is, data must be analyzed in order to provide information 
upon which decisions can be made. In light of this great demand, opportunities for 
the discipline of statistics have never been greater, and there is a special need for 
more bright young persons to go into statistical science. 

If we think of fields in which data play a major part, the list is almost endless: 
accounting, actuarial science, atmospheric science, biological science, economics, 
educational measurement, environmental science, epidemiology, finance, genetics, 
manufacturing, marketing, medicine, pharmaceutical industries, psychology, sociol
ogy, sports, and on and on. Because statistics is useful in all these areas, it really should 
be taught as an applied science. Nevertheless, to go very far in such an applied science, 
it is necessary to understand the importance of creating models for each situation 
under study. Now, no model is ever exactly right, but some are extremely useful as an 
approximation to the real situation. To be applied properly, most appropriate models 
in statistics require a certain mathematical background in probability. Accordingly, 
while alluding to applications in the examples and exercises, this textbook is really 
about the mathematics needed for the appreciation of probabilistic models necessary 
for statistical inferences. 

In a sense, statistical techniques are really the heart of the scientific method. 
Observations are made that suggest conjectures. These conjectures are tested, and 
data are collected and analyzed, providing information about the truth of the conjec
tures. Sometimes the conjectures are supported by the data, but often the conjectures 
need to be modified and more data must be collected to test the modifications, and so 
on. Clearly, in this iterative process, statistics plays a major role with its emphasis on 
proper design and analysis of experiments and the resulting inferences upon which 
decisions can be made. Through statistics, information is provided that is relevant to 
taking certain actions, including improving manufactured products, providing better 
services, marketing new products or services, forecasting energy needs, classifying 
diseases better, and so on. 

Statisticians recognize that there are often errors in their inferences, and they 
attempt to quantify the probabilities of those mistakes and make them as small as 
possible. That these uncertainties even exist is due to the fact that there is variation 
in the data. Even though experiments are repeated under seemingly the same condi
tions, the results vary from trial to trial. In light of this uncertainty, the statistician tries 
to summarize the data in the best possible way, always explaining the error structures 
of the statistical estimates. 

This is an important lesson to be learned: Variation is almost everywhere. It is 
the statistician's job to understand variation. Often, as in manufacturing, the desire is 
to reduce variation so that the products will be more consistent. In other words, car 
doors will fit better in the manufacturing of automobiles if the variation is decreased 
by making each door closer to its target values. 

• 
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x Prologue 

Any student of statistics should understand the nature of variability and the 
necessity for creating probabilistic models of that variability. We cannot avoid making 
inferences and decisions in the face of this uncertainty; however, these inferences and 
decisions are greatly influenced by the probabilistic models selected. Some persons 
are better model builders than others and accordingly will make better inferences and 
decisions. The assumptions needed for each statistical model are carefully examined; 
it is hoped that thereby the reader will become a better model builder. 

Finally, we must mention how modern statistical analyses have become depen
dent upon the computer. Increasingly, statisticians and computer scientists are 
working together in areas of exploratory data analysis and ''data mining." Statistical 
software development is critical today, for the best of it is needed in complicated 
data analyses. In light of this growing relationship between these two fields, it is good 
advice for bright students to take substantial offerings in statistics and in computer 

• science. 
Students majoring in statistics, computer science, or a program at their interface 

such as data science are in great demand in the workplace and in graduate pro
grams. Clearly, they can earn advanced degrees in statistics or computer science or 
both. But, more important, they are highly desirable candidates for graduate work 
in other areas: actuarial science, industrial engineering, finance, marketing, account
ing, management science, psychology, economics, law, sociology, medicine, health 
sciences, etc. So many fields have been ''mathematized'' that their programs are beg
ging for majors in statistics or computer science. Often, such students become ''stars'' 
in these other areas. We truly hope that we can interest students enough that they 
want to study more statistics. If they do, they will find that the opportunities for very 
successful careers are numerous. 



ROBABILITY 

1.1 Properties of Probability 
1.2 Methods of Enumeration 
1.3 Conditional Probability 

1.1 PROPERTIES OF PROBABILITY 

1.4 Independent Events 
l .S Bayes' Theorem 

Chapter 

It is usually difficult to explain to the general public what statisticians do. Many think 
of us as ''math nerds'' who seem to enjoy dealing with numbers, and there is some 
truth to that concept. But if we consider the bigger picture, many recognize that 
statisticians can be extremely helpful in many investigations. 

Consider the following: 

1. There is some problem or situation that needs to be considered, so statisticians 
are often asked to work with investigators or research scientists. 

2. Suppose that some measure is needed to help us understand the situation bet
ter. The measurement problem is often extremely difficult, and creating good 
measures is a valuable skill. As an illustration, in higher education, how do we 
measure good teaching? This is a question to which we have not found a sat
isfactory answer, although several measures such as student evaluations have 
been used in the past. 

3. After the measuring instrument has been developed, we must collect data 
through observation; this data could possibly be the results of a survey or 
experiment. 

4. Using these data, statisticians summarize the results, often with descriptive 
statistics and graphical methods. 

5. These summaries are then used to analyze the situation. Here, it is possible that 
statisticians can make what are called statistical inferences. 

6. Finally, a report is presented, along with some recommendations that are based 
upon the data and the analysis of them. Frequently, such a recommendation 
might be to perform the survey or experiment again, possibly changing some of 
the questions or factors involved. This is how statistics is used in what is referred 
to as the scientific method, because often the analysis of the data suggests other 
experiments. Accordingly, the scientist must consider different possibilities in 
his or her search for an answer and thus perform similar experiments over and 

• over again. 
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2 Chapter 1 Probability 

The discipline of statistics deals with the collection and analysis of data. When 
measurements are taken, even seemingly under the same conditions, the results usu
ally vary. Despite this variability, a statistician tries to find a pattern. However, due 
to the ''noise, " not all the data fit into the pattern. In the face of the variability, the 
statistician must still determine the best way to describe the pattern. Accordingly, 
statisticians know that mistakes will be made in data analysis, and they try to mini
mize those errors as much as possible and then give bounds on the possible errors. 
By considering these bounds, decision-makers can decide how much confidence they 
want to place in the data and in their analysis. If the bounds are wide, perhaps more 
data should be collected. If, however, the bounds are narrow, the person involved in 
the study might want to make a decision and proceed accordingly. 

Variability is a fact of life, and proper statistical methods can help us 
understand data collected under inherent variability. Because of this variability, 
many decisions have to be made that involve uncertainties. For example, a medi
cal researcher's interest may center on the effectiveness of a new vaccine for mumps; 
an agronomist must decide whether an increase in yield can be attributed to a new 
strain of wheat; a meteorologist is interested in predicting the probability of rain; the 
state legislature must decide whether decreasing speed limits will result in fewer acci
dents; the admissions officer of a college must predict the college performance of an 
incoming freshman; a biologist is interested in estimating the clutch size for a partic
ular type of bird; an economist desires to estimate the unemployment rate; and an 
environmentalist tests whether new controls have resulted in a reduction in pollution. 

In reviewing the preceding (relatively short) list of possible areas of statistical 
applications, the reader should recognize that good statistics is closely associated with 
careful thinking in many investigations. As an illustration, students should appreci
ate how statistics is used in the endless cycle of the scientific method. We observe 
nature and ask questions, we run experiments and collect data that shed light on these 
questions, we analyze the data and compare the results of the analysis with what we 
previously thought, we raise new questions, and on and on. Or, if you like, statistics 
is clearly part of the important ''plan-do-study-act'' cycle: Questions are raised and 
investigations planned and carried out. The resulting data are studied, analyzed, and 
then acted upon, often raising new questions. 

There are many aspects of statistics. Some people get interested in the subject 
by collecting data and trying to make sense of their observations. In some cases the 
answers are obvious and little training in statistical methods is necessary. But if a per
son goes very far in many investigations, he or she soon realizes that there is a need for 
some theory to help describe the error structure associated with the various estimates 
of the patterns. That is, at some point appropriate probability and mathematical mod
els are required to make sense of complicated datasets. Statistics and the probabilistic 
foundation on which statistical methods are based can provide the models to help 
people do this. So, in this book we are more concerned with the mathematical rather 
than the applied aspects of statistics. Still, we give enough real examples so that 
the reader can get a good sense of a number of important applications of statistical 
methods. 

In the study of statistics, we consider experiments for which the outcome can
not be predicted with certainty. Such experiments are called random experiments. 
Although the specific outcome of a random experiment cannot be predicted with 
certainty before the experiment is performed, the collection of all possible outcomes 
is known and can be described and perhaps listed. The collection of all possible out
comes is denoted by Sand is called the sample space. Given a sample space S, let A 
be a part of the collection of outcomes in S; that is, A c S. Then A is called an event. 



Section 1.1 Properties of Probability 3 

When the random experiment is performed and the outcome of the experiment is in 
A , we say that event A has occurred. 

In studying probability, the words set and event are interchangeable, so the reader 
might want to review algebra of sets. Here we remind the reader of some terminology: 

• 0 denotes the null or empty set; 

• A c B means A is a subset of B; 

• AU Bis the union of A and B; 

• A n B is the intersection of A and B; 

• A ' is the complement of A (i.e., all elements in S that are not in A). 

Some of these sets are depicted by the shaded regions in Figure 1.1-1, in which Sis 
the interior of the rectangles. Such figures are called Venn diagrams. 

Special terminology associated with events that is often used by statisticians 
includes the fallowing: 

1. A1, A 2, ... , A k are mutually exclusive events, meaning that A i n A j = 0, i # j; 
that is, A1, A 2, ... , A k are disjoint sets; 

2. A1 , A 2, ... , A k are exhaustive events, meaning that A1 U A 2 U · · · U A k = S. 

So, if A1, A 2, ... , A k are mutually exclusive and exhaustive events, we know that 
A i n A j = 0, i # j , andA1 UA2 U · · · U A k = S. 

Set operations satisfy several properties. For example, if A , B, and Care subsets 
of S, we have the fallowing: 

s s 

A A B 

(a) A/ (b) A U B 

s s 

A B 

A B 

c 

(c) An B (d)A U B U C 

Figure I . 1- 1 Algebra of sets 



4 Chapter 1 Probability 

Commutative Laws 

Associative Laws 

Distributive Laws 

De Morgan's Laws 

AUB = BUA 

AnB=BnA 

(AU B) UC= AU (BU C) 

(An B) n c =An (B n C) 

An (Bu C) = (A n B) u (A n C) 

A u (B n C) = (A u B) n (A u C) 

(A U B)' = A' n B' 

(A n B)' = A' U B' 

A Venn diagram will be used to justify the first of De Morgan's laws. In 
Figure 1.1-2( a), A UB is represented by horizontal lines, and thus (A UB)' is the region 
represented by vertical lines. In Figure 1.1-2(b ), A' is indicated with horizontal lines, 
and B' is indicated with vertical lines. An element belongs to A ' n B' if it belongs 
to both A' and B'. Thus the crosshatched region represents A ' n B'. Clearly, this 
crosshatched region is the same as that shaded with vertical lines in Figure 1.1-2(a). 

We are interested in defining what is meant by the probability of event A, 
denoted by P(A) and often called the chance of A occurring. To help us understand 
what is meant by the probability of A, consider repeating the experiment a number 
of times-say, n times. We call these repetitions trials. Count the number of times 
that event A actually occurred throughout these n trials; this number is called the 
frequency of event A and is denoted by N(A). The ratio N(A)/n is called the relative 
frequency of event A in these n repetitions of the experiment. A relative frequency 
is usually very unstable for small values of n, but it tends to stabilize as n increases. 
This suggests that we associate with event A a number-say, p-that is equal to the 
number about which the relative frequency tends to stabilize. This number p can then 
be taken as the number that the relative frequency of event A will be near in future 

"' 
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Figure 1.1-2 Venn diagrams illustrating 
De Morgan's laws 
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performances of the experiment. Thus, although we cannot predict the outcome of a 
random experiment with certainty, if we know p, then for a large value of n we can 
predict fairly accurately the relative frequency associated with event A. The number 
p assigned to event A is called the probability of event A and is denoted by P(A ). 
That is, P(A) represents the proportion of outcomes of a random experiment that 
terminate in the event A as the number of trials of that experiment increases without 
bound. 

The next example will help to illustrate some of the ideas just presented. 

A fair six-sided die is rolled six times. If the face numbered k is the outcome on roll 
k fork = 1, 2, . . . , 6, we say that a match has occurred. The experiment is called a 
success if at least one match occurs during the six trials. Otherwise, the experiment 
is called a failure. The sample space is S = {success, failure}. Let A = {success}. We 
would like to assign a value to P(A). Accordingly, this experiment was simulated 
500 times on a computer. Figure 1.1-3 depicts the results of this simulation, and the 
fallowing table summarizes a few of the results: 

n 

50 
100 
250 
500 

N(A) 

37 
69 

172 
330 

N(A)/n 

0.740 
0.690 
0.688 
0.660 

The probability of event A is not intuitively obvious, but it will be shown in 
Example 1.4-6 that P(A) = 1 - (1 - 1/ 6)6 = 0.665. This assignment is certainly 
supported by the simulation (although not proved by it). • 

Example 1.1-1 shows that, at times, intuition cannot be used to assign probabil
ities, although simulation can perhaps help to assign a probability empirically. The 
next example illustrates where intuition can help in assigning a probability to an 
event. 

freq/n 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0 100 200 300 400 
n 

500 

Figure 1.1-3 Fraction of experiments having at least one 
match 
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A disk 2 inches in diameter is thrown at random on a tiled floor, where each tile 
is a square with sides 4 inches in length. Let C be the event that the disk will land 
entirely on one tile. In order to assign a value to P( C), consider the center of the 
disk. In what region must the center lie to ensure that the disk lies entirely on one 
tile? If you draw a picture, it should be clear that the center must lie within a square 
having sides of length 2 and with its center coincident with the center of a tile. 
Because the area of this square is 4 and the area of a tile is 16, it makes sense to let 
P(C) = 4/ 16. • 

Sometimes the nature of an experiment is such that the probability of A can be 
assigned easily. For example, when a state lottery randomly selects a three-digit inte
ger, we would expect each of the 1000 possible three-digit numbers to have the same 
chance of being selected, namely, 1/ 1000. If we let A= {233, 323, 332}, then it makes 
sense to let P(A) = 3/ 1000. Or if we let B = {234, 243, 324, 342, 423, 432}, then we 
would let P(B) = 6/ 1000. Obtaining probabilities of events associated with many 
other random experiments is not as straightforward as this; Example 1.1-1 provided 
such a case. 

So we wish to associate with A a number P(A) about which the relative fre
quency N(A)/ n of the event A tends to stabilize with large n. A function such as 
P(A) that is evaluated for a set A is called a set function. In this section, we consider 
the probability set function P(A) and discuss some of its properties. In succeeding 
sections, we will describe how the probability set function is defined for particular 
experiments. 

To help decide what properties the probability set function should satisfy, con
sider properties possessed by the relative frequency N(A)/ n. For example, N(A)/ n 
is always nonnegative. If A = S, the sample space, then the outcome of the experi
ment will always belong to S, and thusN(S) / n = 1. Also, if A and Bare two mutually 
exclusive events, then N(A U B)/ n = N(A)/ n + N(B)/ n. Hopefully, these remarks 
will help to motivate the following definition. 

Definition I . 1-1 
Probability is a real-valued set function P that assigns, to each event A in the 
sample space S, a number P(A), called the probability of the event A , such that 
the fallowing properties are satisfied: 

(a) P(A) :::: O; 

(b) P(S) = 1; 

(c) if A 1, A 2, A 3, .. . are events and A i n A j = 0, i i= j, then 

P(A1 U A 2 U · · · U A k) = P(A1) + P(A2) + · · · + P(Ak) 

for each positive integer k, and 

for an infinite, but countable, number of events. 

The theorems that follow give some other important properties of the probability 
set function. When one considers these theorems, it is important to understand the 
theoretical concepts and proofs. However, if the reader keeps the relative frequency 
concept in mind, the theorems should also have some intuitive appeal. 
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For each event A, 

P(A) = 1 - P(A' ). 

Proof [See Figure 1.1-l(a).] We have 

S =A UA' and A nA' = 0. 

Thus, from properties (b) and ( c ), it follows that 

1 = P(A) + P(A' ). 

Hence 

P(A) = 1 - P(A' ). D 

A fair coin is flipped successively until the same face is observed on successive flips. 
Let A= {x: x = 3, 4, 5, ... }; that is, A is the event that it will take three or more flips 
of the coin to observe the same face on two consecutive flips. Perhaps the easiest way 
to find P(A) is to first find the probability of A' = {x: x = 2}, the complement of A. 
In two flips of a coin, the possible outcomes are {HH, HT, TH, TT} , and because the 
coin is fair it is reasonable to assume that each of these four outcomes has the same 
chance of being observed. Thus, 

P(A' ) = P({HH, TT)) = ~

It follows from Theorem 1.1-1 that 

P(A) = 1 - P(A' ) = 1 - ~ = ~-

P(0) = 0. 

Proof In Theorem 1.1-1, take A = 0 so that A'= S. Then 

P(0) = 1 - P(S) = 1 - 1 = 0. 

If events A and Bare such that Ac B, then P(A) < P(B). 

Proof Because A c B, we have 

B = A U (B n A') 

Hence, from property ( c), 

and A n (B n A' ) = 0. 

P(B) = P(A) + P(B n A' ) > P(A) 

because, from property (a), 

P(B n A' ) ::::: 0. 

• 

D 

D 
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For each event A , P(A) < 1. 

Proof Because A c S, we have, by Theorem 1.1-3 and property (b ), 

P(A) < P(S) = 1, 

which gives the desired result. D 

Property (a), along with Theorem 1.1-4, shows that, for each event A , 

0 < P(A) < 1. 

If A and B are any two events, then 

P(A U B) = P(A) + P(B) - P(A n B). 

Proof [ See Figure 1.1-1 (b).] The event A U B can be represented as a union of 
mutually exclusive events, namely, 

A U B = A U (A' n B) . 

Hence, by property ( c), 

P(A U B) = P(A) + P(A' n B). (1.1-1) 

However, 

B = (A n B) u (A' n B), 

which is a union of mutually exclusive events. Thus, 

P(B) = P(A n B) + P(A' n B) 

and 

P(A' n B) = P(B) - P(A n B). 

If the right side of this equation is substituted into Equation 1.1-1, we obtain 

P(A U B) = P(A) + P(B) - P(A n B), 

which is the desired result. D 

Among a certain population of men, 30o/o are smokers, 40°/o are obese, and 25 o/o are 
both smokers and obese. Suppose we select a man at random from this population, 
and we let A be the event that he is a smoker and B be the event that he is obese. 
Then 

P(A U B) = P(A) + P(B) - P(A n B) 

= 0.30 + 0.40 - 0.25 = 0.45 

is the probability that the selected man is either a smoker or obese. • 
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If A, B , and Care any three events, then 

P(A U B U C) = P(A) + P(B) + P( C) - P(A n B) 

-P(A n C) - P(B n C) + P(A n B n C) . 

Proof [See Figure 1.1-l(d).] Write 

A U B U C = A U (B U C) 

and apply Theorem 1.1-5. The details are left as an exercise. D 

A survey was taken of a group's viewing habits of sporting events on TV during the 
last year. Let A = {watched football} , B = {watched basketball}, and C = {watched 
baseball}. The results indicate that if a person is selected at random from the surveyed 
group, then P(A) = 0.43, P(B) = 0.40, P(C) = 0.32, P(A n B) = 0.29, P(A n C) = 
0.22, P(B n C) = 0.20, and P(A n B n C) = 0.15. It then follows that 

P(A u Bu C) = P(A) + P(B) + P( C) - P(A n B) - P(A n C) 

- P(B n C) + P(A n B n C) 

= 0.43 + 0.40 + 0.32 - 0.29 - 0.22 - 0.20 + 0.15 

= 0.59 

is the probability that this person watched at least one of these sports. • 
Let a probability set function be defined on a sample space S = {e1 , e2, ... , em}, 

where each ei is a possible outcome of the experiment. The integer m is called the 
total number of ways in which the random experiment can terminate. If each of these 
outcomes has the same probability of occurring, we say that them outcomes are 
equally likely. That is, 

1 
P({ei}) = - , 

m 
i=l,2, .. . ,m. 

If the number of outcomes in an event A is h , then the integer h is called the number 
of ways that are favorable to the event A. In this case, P(A) is equal to the number 
of ways favorable to the event A divided by the total number of ways in which the 
experiment can terminate. That is, under this assumption of equally likely outcomes, 
we have 

P(A) = ~ = N(A) 
m N(S) ' 

where h = N(A) is the number of ways A can occur and m = N(S) is the number of 
ways Scan occur. Exercise 1.1-15 considers this assignment of probability in a more 
theoretical manner. 

It should be emphasized that in order to assign the probability h/m to the event 
A, we must assume that each of the outcomes e1 , e2, . . . , em has the same probability 
l/m. This assumption is then an important part of our probability model; if it is not 
realistic in an application, then the probability of the event A cannot be computed in 
this way. Actually, we have used this result in the simple case given in Example 1.1-3 
because it seemed realistic to assume that each of the possible outcomes in 
S = {HH, HT, TH, TT} had the same chance of being observed. 
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Let a card be drawn at random from an ordinary deck of 52 playing cards. Then the 
sample space S is the set of m = 52 different cards, and it is reasonable to assume 
that each of these cards has the same probability of selection, 1/ 52. Accordingly, if 
A is the set of outcomes that are kings, then P(A) = 4/ 52 = 1/ 13 because there are 
h = 4 kings in the deck. That is, 1/13 is the probability of drawing a card that is a king, 
provided that each of the 52 cards has the same probability of being drawn. • 

In Example 1.1-6, the computations are very easy because there is no difficulty 
in determining the appropriate values of h and m. However, instead of drawing only 
one card, suppose that 13 are taken at random and without replacement. Then we 
can think of each possible 13-card hand as being an outcome in a sample space, and 
it is reasonable to assume that each of these outcomes has the same probability. For 
example, using the preceding method to assign the probability of a hand consisting 
of seven spades and six hearts, we must be able to count the number h of all such 
hands as well as the number m of possible 13-card hands. In these more complicated 
situations, we need better methods of determining h and m. We discuss some of these 
counting techniques in Section 1.2. 

Exercises 

1.1-1. Of a group of patients having injuries, 28°/o visit 
both a physical therapist and a chiropractor while 8 °/o 
visit neither. Say that the probability of visiting a physical 
therapist exceeds the probability of visiting a chiropractor 
by 16o/o. What is the probability of a randomly selected 
person from this group visiting a physical therapist? 

I . 1-2. An insurance company looks at its auto insurance 
customers and finds that (a) all insure at least one car, (b) 
85 o/o insure more than one car, ( c) 23 o/o insure a sports 
car, and (d) 17°/o insure more than one car, including a 
sports car. Find the probability that a customer selected at 
random insures exactly one car and it is not a sports car. 

1.1-3. Draw one card at random from a standard deck of 
cards. The sample space S is the collection of the 52 cards. 
Assume that the probability set function assigns 1/52 to 
each of the 52 outcomes. Let 

A = {x: x is a jack, queen, or king} , 

B = {x: xis a 9, 10, or jack and xis red} , 

C = {x: xis a club}, 

D = {x: x is a diamond, a heart, or a spade}. 

Find (a) P(A) , (b) P(A n B), (c) P(A U B), (d) P(C U D), 
and (e) P(C n D). 

I . 1-4. A fair coin is tossed four times, and the sequence of 
heads and tails is observed. 

(a) List each of the 16 sequences in the sample space S. 

(b) Let events A, B , C, and D be given by A= {at least 3 
heads}, B = { at most 2 heads}, C = {heads on the third 
toss} , and D = { 1 head and 3 tails}. If the probability 

set function assigns 1/16 to each outcome in the sam
ple space, find (i) P(A), (ii) P(A n B), (iii) P(B), (iv) 
P(A n C), (v) P(D), (vi) P(A U C), and (vii) P(B n D). 

1.1-5. Consider the trial on which a 3 is first observed in 
successive rolls of a six-sided die. Let A be the event that 
3 is observed on the first trial. Let B be the event that at 
least two trials are required to observe a 3. Assuming that 
each side has probability 1/6, find (a) P(A) , (b) P(B), and 
(c) P(A u B). 

1.1-6. If P(A) = 0.5, P(B) = 0.6, and P(A n B) = 0.4, find 
(a) P(A U B), (b) P(A n B' ), and (c) P(A' U B' ). 

1.1-7. Given that P(A u B) = 0.76 and P(A u B' ) = 0.87, 
find P(A). 

I . 1-8. During a visit to a primary care physician's office, 
the probability of having neither lab work nor referral to a 
specialist is 0.21. Of those coming to that office, the prob
ability of having lab work is 0.41 and the probability of 
having a referral is 0.53. What is the probability of having 
both lab work and a ref err al? 

I . 1-9. Roll a fair six-sided die three times. Let A 1 = 
{l or 2 on the first roll}, A 2 = {3 or 4 on the second roll} , 
and A 3 = {5 or 6 on the third roll}. It is given that P(Ai) = 
1/ 3, i = 1, 2, 3; P(Ai n Aj) = (1/ 3)2 , i # j ; and 
P(A1 n A2 n A3) = (1 / 3)3. 

(a) Use Theorem 1.1-6 to find P(A1 U A 2 U A 3). 

(b) Show that P(A1 UA2 UA3) = 1 - (1 - 1/ 3)3 . 

1.1-10. Prove Theorem 1.1-6. 
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I • 1-1 I . A typical roulette wheel used in a casino has 38 
slots that are numbered 1, 2, 3, ... , 36, 0, 00, respectively. 
The O and 00 slots are colored green. Half of the remaining 
slots are red and half are black. Also, half of the integers 
between 1 and 36 inclusive are odd, half are even, and O 
and 00 are defined to be neither odd nor even. A ball is 
rolled around the wheel and ends up in one of the slots; 
we assume that each slot has equal probability of 1/38, and 
we are interested in the number of the slot into which the 
ball falls. 

1.1-13. Divide a line segment into two parts by selecting a 
point at random. Use your intuition to assign a probability 
to the event that the longer segment is at least two times 
longer than the shorter segment. 

1.1-14. Let the interval [-r, r] be the base of a semicircle. 
If a point is selected at random from this interval, assign a 
probability to the event that the length of the perpendic
ular segment from the point to the semicircle is less than 
r/2. 

(a) Define the sample space S. 

(b) Let A= {O, 00}. Give the value of P(A). 

I.I-IS. Let S = A 1 U A 2 U · · · U A m, where events 
A 1, A 2, ... , A m are mutually exclusive and exhaustive. 

(c) Let B = {14, 15, 17, 18}. Give the value of P(B). 

(d) Let D = {x: xis odd}. Give the value of P(D). (a) If P(A1) = P(A2) = · · · = P(Am), show that P(Ai) = 
1/ m , i = 1, 2, ... , m. 

1.1-12. Let x equal a number that is selected randomly 
from the closed interval from zero to one, [O, 1 ]. Use your 
intuition to assign values to 

(b) If A= A1 UA2 U · · · UAh, where h < m , and (a) holds, 
prove that P(A) = h / m. 

(a) P({x: 0 < x < 1/3}). 

(b) P({x: 1/3 < x < l}). 

(c) P({x: x = 1/3}). 

(d) P({x: 1/2 <X < 5}). 

1.1-16. Letpn, n = 0, 1, 2, ... , be the probability that an 
automobile policyholder will file for n claims in a five-year 
period. The actuary involved makes the assumption that 
Pn+l = (1/4)Pn· What is the probability that the holder 
will file two or more claims during this period? 

1.2 METHODS OF ENUMERATION 

Example 
1.2-1 

In this section, we develop counting techniques that are useful in determining the 
number of outcomes associated with the events of certain random experiments. We 
begin with a consideration of the multiplication principle. 

Multiplication Principle: Suppose that an experiment ( or procedure) E1 has n1 

outcomes and, for each of these possible outcomes, an experiment (procedure) E2 
has n2 possible outcomes. Then the composite experiment (procedure) E1E2 that 
consists of performing first E1 and then E2 has n 1n 2 possible outcomes. 

Let £ 1 denote the selection of a rat from a cage containing one female (F) rat and one 
male (M) rat. Let £ 2 denote the administering of either drug A (A), drug B (B), or a 
placebo (P) to the selected rat. Then the outcome for the composite experiment can 
be denoted by an ordered pair, such as (F, P). In fact, the set of all possible outcomes, 
namely, (2)(3) = 6 of them, can be denoted by the following rectangular array: 

(F, A) (F, B) (F, P) 

(M, A) (M, B) (M, P) • 
Another way of illustrating the multiplication principle is with a tree diagram 

such as that in Figure 1.2-1. The diagram shows that there are n1 = 2 possibilities 
(branches) for the sex of the rat and that, for each of these outcomes, there are n 2 = 3 
possibilities (branches) for the drug. 

Clearly, the multiplication principle can be extended to a sequence of 
more than two experiments or procedures. Suppose that the experiment Ei has 
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F 

M 

Figure I .2-1 Tree diagram 

A 

B 

p 

A 

B 

p 

ni (i = 1, 2, ... , m) possible outcomes after previous experiments have been per
formed. Then the composite experiment E1E2 ···Em that consists of performing E1, 

then E2, ... , and finally Em has n1n2 ···nm possible outcomes. 

A caf e lets you order a deli sandwich your way. There are: E1, six choices for bread; 
E2, four choices for meat; E3, four choices for cheese; and E4, 12 different garnishes 
(condiments). The number of different sandwich possibilities, if you may choose one 
bread, 0 or 1 meat, 0 or 1 cheese, and from Oto 12 condiments is, by the multiplication 
principle, noting that you may choose or not choose each condiment, 

(6)(5)(5)(212
) = 614,400 

different sandwich combinations. • 
Although the multiplication principle is fairly simple and easy to understand, it 

will be extremely useful as we now develop various counting techniques. 
Suppose that n positions are to be filled with n different objects. There are n 

choices for filling the first position, n - 1 for the second, ... , and 1 choice for the last 
position. So, by the multiplication principle, there are 

n(n - 1) · · · (2)(1) = n! 

possible arrangements. The symbol n! is read ''n factorial. " We define O! = 1; that is, 
we say that zero positions can be filled with zero objects in one way. 

Definition 1.2-1 
Each of the n! arrangements (in a row) of n different objects is called a 
permutation of the n objects. 

The number of permutations of the four letters a, b, c, and d is clearly 4! = 24. 
However, the number of possible four-letter code words using the four letters a, b, c, 
and d if letters may be repeated is 44 = 256, because in this case each selection can 
be performed in four ways. • 

If only r positions are to be filled with objects selected from n different objects, 
r < n, then the number of possible ordered arrangements is 

nPr = n(n - l)(n - 2) · · · (n - r + 1). 
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That is, there are n ways to fill the first position, (n - 1) ways to fill the second, and 
so on, until there are [ n - (r - 1)] = (n - r + 1) ways to fill the rth position. 

In terms of factorials, we have 

n(n - 1) · · · (n - r + l)(n - r) · · · (3)(2)(1) n! 
nPr = = . 

(n - r) · · · (3)(2)(1) (n - r)! 

Definition 1.2 .. 2 
Each of the nPr arrangements is called a permutation of n objects taken rat a 
time. 

The number of possible four-letter code words, selecting from the 26 letters in the 
alphabet, in which all four letters are different is 

26! 
26p4 = (26)(25)(24)(23) = 22! == 358,800. • 

The number of ways of selecting a president, a vice president, a secretary, and a trea
surer in a club consisting of ten persons is 

10! 
10P 4 = 10 · 9 · 8 · 7 == 

6
! == 5040. • 

Suppose that a set contains n objects. Consider the problem of selecting r objects 
from this set. The order in which the objects are selected may or may not be impor
tant. In addition, it is possible that a selected object is replaced before the next object 
is selected. Accordingly, we give some definitions and show how the multiplication 
principle can be used to count the number of possibilities. 

Definition 1.2-3 
If r objects are selected from a set of n objects, and if the order of selection is 
noted, then the selected set of r objects is called an ordered sample of sizer. 

Definition 1.2 .. 4 
Sampling with replacement occurs when an object is selected and then replaced 
before the next object is selected. 

By the multiplication principle, the number of possible ordered samples of size 
r taken from a set of n objects is nr when sampling with replacement. 

A die is rolled seven times. The number of possible ordered samples is 67 == 279, 936. 
Note that rolling a die is equivalent to sampling with replacement from the set 
{1,2,3,4,5,6}. • 
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An urn contains ten balls numbered 0, 1, 2, ... , 9. If four balls are selected one 
at a time and with replacement, then the number of possible ordered samples is 
104 = 10,000. Note that this is the number of four-digit integers between 0000 and 
9999, inclusive. • 

Definition I .2-S 
Sampling without replacement occurs when an object is not replaced after it has 
been selected. 

By the multiplication principle, the number of possible ordered samples of size 
r taken from a set of n objects without replacement is 

n! 
n(n - 1) · · · (n - r + 1) = , 

(n - r)! 

which is equivalent to nP,, the number of permutations of n objects taken rat a time. 

The number of ordered samples of five cards that can be drawn without replacement 
from a standard deck of 52 playing cards is 

(52)(51)(50)( 49)( 48) = !~: = 311,875,200. • 

REMARK Note that it must be true that r < n when sampling without replacement, 
but r can exceed n when sampling with replacement. • 

Often the order of selection is not important and interest centers only on the 
selected set of r objects. That is, we are interested in the number of subsets of sizer 
that can be selected from a set of n different objects. In order to find the number of 
(unordered) subsets of sizer, we count, in two different ways, the number of ordered 
subsets of size r that can be taken from then distinguishable objects. Then, equating 
the two answers, we are able to count the number of (unordered) subsets of sizer. 

Let C denote the number of (unordered) subsets of sizer that can be selected 
from n different objects. We can obtain each of the nP, ordered subsets by first select
ing one of the C unordered subsets of r objects and then ordering these r objects. 
Because the latter ordering can be carried out in r! ways, the multiplication principle 
yields ( C)(r!) ordered subsets; so ( C)(r!) must equal nP, . Thus, we have 

or 

C = n! 
r!(n - r)!. 

We denote this answer by either nC, or (; ); that is, 

n 
nCr = 

r 

n! 
r! (n - r)! · 
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Accordingly, a set of n different objects possesses 

n n! 

r r!(n - r)! 

unordered subsets of size r < n. 
We could also say that the number of ways in which r objects can be selected 

without replacement from n objects when the order of selection is disregarded is 
n 

= nCr, and the latter expression can be read as ''n choose r." This result 
r 

motivates the next definition. 

Definition 1.2-6 
Each of the nCr unordered subsets is called a combination of n objects taken r 
at a time, where 

n n! 

r r!(n - r)!. 

The number of possible five-card hands (in five-card poker) drawn from a deck of 52 
playing cards is 

52
! = 2 598 960. 

5!47! ' ' • 

The number of possible 13-card hands (in bridge) that can be selected from a deck 
of 52 playing cards is 

52 
s2C13 = 

13 

52! 
13! 39! = 635,013,559,600. • 

The numbers n are frequently called binomial coefficients because they arise 
r 

in the expansion of a binomial. We illustrate this property by giving a justification of 
the binomial expansion 

n 

( a + b )n = L n br an- r. 
r 

r=O 

For each summand in the expansion of 

(a+b)n = (a + b)(a + b)· ·· (a + b) , 

(1.2-1) 

either an a or a b is selected from each of the n factors. One possible product is then 
br an-r; this occurs when b is selected from each of r factors and a from each of the 

n 
remaining n - r factors. But the latter operation can be completed in ways, which 

r 
then must be the coefficient of br an- r, as shown in Equation 1.2-1. 



I 6 Chapter 1 Probability 

Example 
I .2-1 I 

The binomial coefficients are given in Table I in Appendix B for selected values 
of n and r. Note that for some combinations of n and r , the table uses the fact that 

n 

r 

n! 
r!(n - r)! 

n! 
(n - r)!r! 

n 
• 

n - r 

That is, the number of ways in which r objects can be selected out of n objects is equal 
to the number of ways in which n - r objects can be selected out of n objects. 

Assume that each of the 
52 

5 
= 2,598,960 five-card hands drawn from a deck of 52 

playing cards has the same probability of being selected. Then the number of possible 
five-card hands that are all spades ( event A) is 

13 
because the five spades can be selected from the 13 spades in 

5 
ways, after which 

zero nonspades can be selected in 
3
; = 1 way. We have 

13 = 13! = 1287 
5 5!8! 

from Table I in Appendix B. Thus, the probability of an all-spade five-card hand is 

P(A) = N(A) = 1287 = 0.000495. 
N(S) 2,598,960 

Suppose now that the event B is the set of outcomes in which exactly three cards are 
kings and exactly two cards are queens. We can select the three kings in any one of 

: ways and the two queens in any one of ~ ways. By the multiplication principle, 

the number of outcomes in Bis 

4 
N(B) = 

3 

4 

2 
44 
0 ' 

where 
44 

0 
gives the number of ways in which O cards are selected out of the 

nonkings and nonqueens and of course is equal to 1. Thus, 

4 4 

P(B) = N(B) = _3 __ _ 
N(S) 

24 

5 6 
= 0.0000092. 

2, 98,9 0 

Finally, let C be the set of outcomes in which there are exactly two kings, two queens, 
and one jack. Then 

4 4 4 40 

P(C) = N(C) = _2_2 __ 1 __ 
N(S) 52 

144 
2,598,960 = 0.000055 

5 

because the numerator of this fraction is the number of outcomes in C. • 
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Now suppose that a set contains n objects of two types: r of one type and n - r of 
the other type. The number of permutations of n different objects is n! . However, in 
this case, the objects are not all distinguishable. To count the number of distinguish
able arrangements, first select rout of then positions for the objects of the first type. 

This can be done in n ways. Then fill in the remaining positions with the objects 
r 

of the second type. Thus, the number of distinguishable arrangements is 

n! 

r r! (n - r)! · 

Definition 1.2-7 
Each of the nCr permutations of n objects, r of one type and n - r of another 
type, is called a distinguishable permutation. 

A coin is flipped ten times and the sequence of heads and tails is observed. The num
ber of possible 10-tuplets that result in four heads and six tails is 

10 

4 

10! 

4! 6! 

10! 

6! 4! 

10 

6 
== 210. • 

The Eastern red-backed salamander (Plethodon cinereus) is the most abundant 
salamander species in the northeastern fores ts of North America and has three 
recognized color morphs: red-backed, lead-backed, and erythristic (red with black 
mottling). In a study of possible differences among color morphs with respect to 
their ability to avoid detection and capture by predators, four red-backed and five 
lead-backed morphs are released into a controlled forest environment. The order in 
which they are captured ( and eaten) by predators is recorded. Considering only the 
color morph of the salamanders, there are 

9 
== 

9
! == 126 

4 5!4! 

possible orders in which they can be captured. • 
The foregoing results can be extended. Suppose that in a set of n objects, n1 are 

similar, n2 are similar, ... , ns are similar, where n1 +n2 + · · · +ns == n. Then the number 
of distinguishable permutations of then objects is (see Exercise 1.2-15) 

n n! 
(1.2-2) 

Among eight Eastern red-backed salamanders released into a controlled forest envi
ronment, three are the red-backed morphs, three are lead-backed, and two are 
erythristic. The number of possible orders in which these salamanders can be cap
tured by predators is 

8 

3, 3, 2 

8! 
-- ==560. 
3! 3! 2! • 




